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1 Dynare: Introduction.

e Download Dynare and additional information and a wonderful user
guide from http://www.cepremap.cnrs.fr/dynare/.

e How does Dynare work?
— The user writes a mod-file.
— Dynare produces an m-file from it.

— It solves non-linear models with forward looking variables.

— It estimates the parameters of those models.

e A Dynare code that solves a non-linear model consists of the following
parts:

— Declaration of the variables.

Declaration of the parameters.
— The equations of the model.

— Steady state values of the model.

Definition of the properties of the shocks.

— Setting of additional options for the execution commands.

2 Example: Slightly extended RBC model

We will simulate data from the model by the stoch simul command. Af-
terwards the simulated dataset is used to estimate the parameters of the
model.

max E Z Bet (log c; — Any) (1)
t=0



s.t.

ct+Te = Yt (2)

ye = e"tki_ni ™’ (3)

ety = ky—(1—09)ki—1 (4)

Nag = Pallai—1 + €aty €ar ~ N(0,05) id.d. (5)
Mot = PoMbt—1 1 €bt, €bt ~ N(O,af) t.4.d. (6)
Net = Pallet1 + €xts €xt ~ N(0,02) i.i.d. (7)

The structural shocks are assumed to be uncorrelated.

3 Structure of a mod-file

3.1 Declaration of the variables, parameters and shocks
e Endogenous and exogenous variables are declared separately.
e For endogenous variables use: ’var’.

e Example:

var n y ¢ k x eta_b eta_a eta_x;
e Exogenous variables are declared with: "varezo’.
e Example:

varexo eps_b eps_a eps_x;

e The variances and covariances of the shocks are defined within the
commands 'shocks’ and ’end’

e The command 'var eps_b; stderr 0.02; sets ocp = 0.02

e The covariances between two shocks can be declared as: "var eps! eps2
= phi’
e Example: shocks;
var eps_b; stderr 0.02;
var eps_a; stderr 0.02;
var eps_x; stderr 0.02;
end;

e The parameters of the model are defined with the command ’'parame-
ters’



e Example:

parameters A theta delta beta rho_b rho_a rho_x;

e Afterwards they are calibrated:
Example:

A=2.3; theta=0.36; betta = 0.99; delta = 0.025;rho_b =0.5; rho_a
=0.5; rho_x =0.5;

3.2 The model

e The equations of the model are defined within the commands ’model’
and 'end’.

e Different time indices are abbreviated as

— Xt =T
— Tt41 = JJ(+1)

— x4—1 = x(-1)

e In case the model consist of linear equations use 'model (linear)’ as
opening command.

Example:

model (1inear) ;

# y_k = (1/theta)*(1/beta-1+delta);

# c_k = y_k-delta;

n=y-c;
c=-eta_b(+1)+eta_b+(1-delta)*betaxeta_x(+1)-eta_x
+c(+1) -theta*beta*y_kxy(+1)+thetaxbeta*y_k*k;
y=eta_at+thetaxk(-1)+(1-theta) *n;
k=delta*x+(1-delta)*k(-1)+delta*eta_x;
x=(y_k/delta)*y-(c_k/delta)*c;
eta_b=rho_b*eta_b(-1)+eps_b;
eta_a=rho_axeta_a(-1)+eps_a;
eta_x=rho_x*eta_x(-1)+eps_x;

end;

3.3 Steady state of the model
3.3.1 Steady state computation by initval

e Dynare solves for the steady state of the model. It just needs initial
starting values.

e These are specified within the commands “initval’ and 'end’.



e Then: ’steady’.
e This routine is very sensitive to your guess.

e The best guess is the analytically calculated steady state.

The steady state of the model: Example for initial starting values.
initval;

y = 0.9916
.2875;
.6656;
.0419;

.2419;

eta_b = 0; eta_a

eta_x = 0; eps_a

eps_x = 0; eps_b
end;
steady;
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3.3.2 Steady state computation: Do it yourself

You can write your own routine that computes the steady state:

e A simple Matlab file that has to be called with the name of your Dynare
file followed by _steadystate.

e For example the function that returns the steady state vector for a
model in a file called DSGE_exampel .mod has to be called:
DSGE_exampel_steadystate.m

e The matlab function that computes the steady state for the file three shock
is called:
function [ys check] = three_shock_steadystate (junk, ys)

e ’ys’ is the vector containing the steady state values - the variables have
to be ordered alphabetically!

e 'check’ can simply be set zero.

e Do not forget to declare the parameters necessary to solve the steady
state as global.

Example code

function [ys check] = three_shock_steadystate (junk, ys)
global theta A delta beta
y_over_k=(1/beta-1+delta)/theta;

x_over_k=delta;



c_over_y=y_over_k - x_over_k;
n=((1-theta)/A)*(c_over_y) (-1);
k=(y_over_k) (1/(theta-1))*n;
y=y_over_kxk;

C=C_OVer_y*y;

x=x_over_kx*k

eta_a=0;eta_b=0;eta_x=0;

ys=[c; eta_a; eta_b; eta_x; k; n; x; yl;
check=0;

3.4

Solving the model

The command ’stoch_ simul’ starts the solution routine. - It is the *Do
it’ function in Dynare.

It computes a Taylor approximation around the steady state of order
one or two.

It simulates data from the model.

Furthermore moments, autocorrelations and impulse responses are com-
puted.

Options set outside the command ’stoch_ simul’:
— “check’ - computes and displays the eigenvalues of the model. Ex-
ample: check;
— ’datatomfile’ - saves the simulated data in a m file. Example:
datatomfile(’simuldata’, [])
Additional options can be set in brackets after ’stoch  simul’:
— 'periods’ - specifies the number of simulation periods. Example:
periods=1000;

— Yirf’ sets the number of periods for which to compute impulse
responses.

— "nomoments’, 'nocorr’, 'nofunctions’: moments, correlations or
the approximated solution are not printed.

— ’order=1’ sets the order of the Taylor approximation (default is
two).

— Example: stoch_simul (irf=20, order=1, nomoments) ;

— Have a look at the Dynare manual for complete description.



3.5 Output

Dynare prints the following:

e Summary of variables:

— Number of variables: 8

Number of stochastic shocks: 3

— Number of state variables: 4 - number of predetermined variables

Number of jumpers: 4 - variables that appear with a lead

— Number of static variables: 2 - variables that appear neither with
lag nor lead

Matrix of Covariance of exogenous shocks

Recursive law of motion

Moments, Correlation and Autocorrelation of simulated variables

All results are stored in filename results.mat:

— The matrix dr_ contains e.g.:

* Recursive law of motion (ghz, ghu).
*x Eigenvalues
* Steady state (ys)

— The matrix oo_ contains e.g.:

* Posterior mode and std
* Marginal density
* Smoothed shocks

4 Estimating the model

4.1 The dataset

e Observed variables are declared after varobs. You can include the
dataset in the following ways:

— As matlab savefile (*.mat). Names of variables have to correspond
to the ones declared under varobs.

— As m-file. Again names of variables have to correspond to the
ones declared under wvarobs.



e Matching data to the model:

The variables of the model are often log deviations from the steady
state with zero mean and no growth trend. To fit the model and the
data you can do the following:

— Detrend the data before by HP filter or a linear detrending.
— Compute first differences of the dataset and fit the model by:
x Declaring additional endogenous variables, for example: var
y_obs.
x Augmenting the model block with observation equations, e.g.:

y_obs =y —y(—1) + log(psi)

4.2 Prior distribution

e For each parameter to be estimated a conjugate prior distribution has
to be defined.

e There are four common prior distributions used in the literature:

— Beta distribution for parameters between 0 and 1.
— Gamma distribution for parameters restricted to be positive.

— InverseGamma distribution for the standard deviation of the
shocks.

— Normal distribution.

e Have a look at Del Negro and Schorfheide (2007) for a discussion of
prior distributions.

e See figure 1.

Example Prior distribution declaration
estimated_params;

A, normal_pdf, 2, 0.3;

theta, beta_pdf, 0.3, 0.1;

beta, beta_pdf, 0.99, 0.001;

delta, beta_pdf, 0.0025, 0.005;

rho_a, beta_pdf, 0.7, 0.15;

rho_b, beta_pdf, 0.7, 0.15;

rho_x, beta_pdf, 0.7, 0.15;

stderr eps_a, inv_gamma_pdf, 0.02, inf;
stderr eps_b, inv_gamma_pdf, 0.02, inf;
stderr eps_x, inv_gamma_pdf, 0.02, inf;
end;



4.3 The estimation routine
e The command estimation triggers the estimation of the model:

1. The likelihood function of the model is evaluated by the Kalman
Filter.

2. Posterior mode is computated.

3. The distribution around the mode is approximated by a Markov
Monte Carlo algorithm.

4. Diagnostics, impulse response functions, moments are printed.
e Some options include:

— datafile= FILENAME specifies the filename.

— nobs number of observation used.

first_obs specifies the first observation to be used.
— mode_ compute specifies the optimizer. For example:

x (0: switch mode computation off
% 1: fmincon

* 4: csminwel
— nodiagnostic

— The Dynare userguide offers a very good description of all options
available.

4.4 How to produce and interpret figures

To produce figures add the option of interest into the brackets after the
estimation command.

4.4.1 Mode check

e Example: estimation(mode_check).
e See figure 3.

e The figure plots how the objective function changes if the respective
parameter is varied while the other held constant.

e Make sure to observe a minimum for each parameter.



4.4.2 Prior vs. Posterior

e For each parameter Dynare plots the prior and the posterior distribu-
tion in one figure.

e The grey line represents the prior, the black line the posterior. Both
should be different from each other. In case there are not the parameter
is not identified.

e The dotted green line represents the value at the posterior mode. Ide-
ally the mode is in the center of the posterior distribution.

e See figure 2 for an example.

4.4.3 Diagnostics

Convergence of the Markov chain is important.

e Dynare runs different, independent chains. Default=2. Set the number
of chains by: mh_ blocks.

e Longer chains are more likely to have converged. Set the number of
draws by: mh_ replic

e The first draws should be discarded. Set the percentage of discarded
draws by: mh_ drop.

e Dynare plots one multivariate statistic (figure 4) and several univariate
ones (figure 5)-depending on the number of parameters.

e In the convergence diagnostic figure the red and blue line represent
specific within and between chain measures: !

— Interval statistic constructed around parameter mean.
— M2 statistic a measure of the variance.

— M3 based on third moments.

e Both lines (red and blue) should be constant and should converge.

e The multivariate convergence statistic as an aggregate measure is based
on the eigenvalues of the variance-covariance matrix.

'For more information on the measures see Brooks and Gelman (1998)



4.4.4 Bayesian impulse response function

e Example: estimation(bayesian_irf, irf=10) y,n.

See figure 6.

Length of IRF is controlled with irf.

e The variables for which IRF should be plotted can be named after the
brackets.

Dynare generates IRF for each parameter vector draw. This yields the
distribution of IRFs.

4.4.5 Filtered and smoothed variables

e filtered wars triggers the computation of filtered variables, i.e. forecast
on past information (see figure 7):

Ty—1 = Elwe| L]

e smoother computes posterior distribution of smoothed endogenous vari-
ables and shocks, i.e. infers about the unobserved state variables using
all available information up to 7" (see figure 8):

mt|T = E[.ﬁL’t|IT]

e The plot of smoothed shocks is always produced. It also serves as a
check for the estimation — the shock realizations should be around
zero. (see figure 9)

4.4.6 Out of sample forecast

e Example: estimation(forecast=10) yield a forecast 10 periods.

e There are two confidence intervals plotted (see figure 10):

— The green lines correspond to parameter uncertainty. The way it
is computed is similar to the Bayesian IRF.

— The red lines take the possibility of future shocks into account.

5 Additional insights

5.1 Save some time

e mode_ file=filename_mode uses former mode. This mode file is auto-
matically generated by Dynare. Don’t forget: Set mode_ compute=0.
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e Continue an old Markov chain: load_mh_ file.
e Example: estimation(mode_file=filename_mode, mode_compute=0,
load_mh_file)
5.2 Markov chain mechanism
The MCMC mechanism can be summarized in the following steps 2:

e Given #"~!, draw the parameter vector 6 from a joint normal distribu-
tion (proposal distribution):

0 ~ N (0, c*%)

where Y denotes the inverse Hessian evaluated at the posterior mode
and c a scaling factor.

e Denote the logobjective function as [(f). The draw is then accepted
with probability:

min(1, exp(1(8°) — 1(6°71)))

e Repeat this until the distribution has converged to the target distribu-
tion.

e — The average acceptance rate and therefore the speed of convergence
depend on the scaling parameter c.

e Recommended is an accepted rate of about 0.23 (see Roberts et al.
(1994) for a formal derivation). The optimal scale factor has to be
found by trial and error.

e mh_jscale sets the scaling parameter.

e mh_nit_scale allows for a wider distribution for the first draw.

5.3 From mod to m file

Dynare produces three m-files. It is possible to set all options directly in the
m-files:
The m-file named as the mod file contains all options. For example:

e options_.mode_ compute=0;
e options .mode_ file="filename_mode’;
e options_.load_mh_file=1;

e options_.mh_jscale=0.43;

*Have a look at Schorfheide (2000) and An and Schorfheide (2006) for a detailed de-
scription of the algorithm.
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5.4

Dynare and nohup

Dynare cannot be started by a nohup command. Instead:

1.

2.

4.

D.

Run the Dynare command on your desktop.
Open the now created m-file.

Set the folder containing Dynare on the server. For example:

path(path,’../dynare_v3/matlab’)
Upload the m-files and your dataset.

Run the m-file by the nohup command

Example:
nohup matlab -nodisplay <filename.m >output.txt&

5.5

Create tex-tables

Run Dynare and stop it shortly afterwards.
Type lgy
Then define lgy TeX in your mod-file.

Add the list from lgy_ to your mod-file in the following way:(lgy
and lgy Tex has to have the same order!)

lgy_TeX_ = ’c’;

lgy_TeX_ = strvcat(lgy_TeX_,’eta_a’);
lgy_TeX_ = strvcat(lgy_TeX_,’eta_b’);
lgy_TeX_ = strvcat(lgy_TeX_,’eta_x’);
lgy_TeX_ = strvcat(lgy_TeX_,’k’);
lgy_TeX_ = strvcat(lgy_TeX_,’n’);
lgy_TeX_ = strvcat(lgy_TeX_,’x’);

lgy_TeX_ = strvcat(lgy_TeX_,’y’);

To set the names of the parameters first look up the order by typing
estim_params_.param_names. Then define the matrix estim_params_.tex
in you mod-file:

estim_params_.tex = ’A’;

estim_params_.tex = strvcat(estim_params_.tex,’theta’);

estim_params_.tex = strvcat(estim_params_.tex,’beta’);
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estim_params_.tex = strvcat(estim_params_.tex,’delta’);
estim_params_.tex = strvcat(estim_params_.tex,’rho_a’);
estim_params_.tex = strvcat(estim_params_.tex,’rho_b’);

estim_params_.tex = strvcat(estim_params_.tex,’rho_x’);
e Repeat this for:

—lgx —lgx TeX

— options _.varobs — options .wvarobs TeX

e Additionally lgz TeX andlgy TeX have to be defined globally:
global 1gx_TeX_ 1lgy_TeX_ ;

e Do not forget to add tex to the estimation options.

This yields for example:
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Prior distribution Prior mean

Prior s.d. Post. mean HPD inf HPD sup

norm
beta
beta
beta
beta
beta
beta

2.000
0.300
0.990
0.025
0.700
0.700
0.700

0.3000
0.1000
0.0010
0.0050
0.1500
0.1500
0.1500

2.3032
0.3612
0.9899
0.0256
0.5903
0.6308
0.5980

2.2346
0.3518
0.9883
0.0210
0.5317
0.4965
0.4231

2.3592
0.3714
0.9914
0.0301
0.6954
0.8801
0.6856

Table 1: Results from Metropolis Hastings (parameters)
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Figures

Figure 1: Plot of prior distribution
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Figure 2: Prior vs. Posterior
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Figure 3: Mode check plots
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Figure 4: Plot multivariate convergence statistics

Interval

w A~ O o N

0.2 0.4 0.6 0.8 1 12 14 16 18 2

18



Figure 5: Example univariate convergence figure
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Figure 6: Bayesian IRF
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Figure 7: Filtered variables
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Figure 8: Smoothed variables
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Figure 9: Smoothed shocks
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